
doi: 10.5937/MatMor2301113O
Mathematica Moravica
Vol. 27, No. 1 (2023), 113–128

Ideal convergence and ideal Cauchy sequences in
intuitionistic fuzzy metric spaces

Aykut Or, Gökay Karabacak∗

Abstract. The present study introduces the concepts of ideal conver-
gence (I–convergence), ideal Cauchy (I–Cauchy) sequences, I∗–convergence,
and I∗–Cauchy sequences in intuitionistic fuzzy metric spaces. It defines
I–limit and I–cluster points as a sequence in these spaces. Afterward,
it examines some of their basic properties. Lastly, the paper discusses
whether phenomena should be further investigated.

1. Introduction

Based on the concept of density of positive natural numbers, statistical
convergence was independently defined by Fast [8] and Steinhaus [9] in 1951.
Adopting an ideal I of some subsets of the set of positive integers, Kostryko
et al. [18] have characterized ideal convergence (I–convergence) as a gen-
eralization of ordinary and statistical convergence and also conceptualized
the I∗–convergence closely related to I–convergence. Besides, Dems [13] has
extended the statistical Cauchy sequence [10] to ideals and introduced ideal
Cauchy (I–Cauchy) sequences. Nabiyev et al. [3] have proposed I∗–Cauchy
sequences and investigated the relationship between these sequences and
I–Cauchy sequences.

Fuzzy sets, defined by Zadeh [15] in 1965, have been used in many fields,
such as artificial intelligence, decision-making, image analysis, probability
theory, and weather forecasting. In particular, Kramosil and Michalek [12]
and Kaleva and Seikkala [17] have first examined the concept of fuzzy metric
spaces (FMSs). Furthermore, George and Veeramani [2], using continuous
t–norms, extensively revised the concept of fuzzy metric space originally
proposed by Kramosil. As a result, they established a Hausdorff topology
for fuzzy metric spaces and have introduced significant advancements in this
field.
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Lately, Mihet [6] has studied the notion of point convergence (p–conver-
gence), a weaker concept than ordinary convergence. Moreover, Gregori
et al. [20] have suggested the s–convergence. Morillas and Sapena have
defined the concept of standard convergence (std–convergence) [19]. Gregori
and Miñana [21] have introduced the strong convergence (st–convergence), a
stronger concept than ordinary convergence. Li et al. [5] have propounded
the statistical convergence and statistical Cauchy sequence in FMSs and
have examined some of their basic properties.

In 1986, Atanasov [14] generalized a fuzzy set introduced by Zadeh [15],
accepting the membership as a fuzzy logic value rather than a single truth
value, and introduced the Intuitionistic Fuzzy Set (IFS). Later, in 2004, Park
[11] generalized the notion of fuzzy metric spaces to the intuitionistic fuzzy
metric spaces (IFMSs) with the help of an intuitionistic set. Many studies,
such as fixed point theory [16] and convergence types [1], have been studied
and introduced in IFMSs. One of these studies, the statistical convergence
in IFMSs, was dealt with by Varol in 2022 [4].

The current paper can be summarized in the following way. Section 2
presents some basic definitions and properties required in the following sec-
tions. Section 3 proposes the concepts of I and I∗–convergence, I and I∗–
Cauchy sequence in IFMSs and suggests some of their basic properties. Sec-
tion 4 defines the notions of I–limit points and I–cluster points of a sequence
in IFMSs. The final section discusses the need for further research.

2. Preliminaries

This section presents the exhaustive definitions, basic properties, and the-
orems for ideal convergence, ideal Cauchy sequences, IFMSs and statistical
convergence in IFMSs.

Definition 1 ([7]). Let ◦ : [0, 1]2 → [0, 1] be a binary operation. We say
that ◦ is a triangular norm (t–norm) if it satisfies the following conditions:

(1) ◦ is both associative and commutative;
(2) t ◦ 1 = t for all t ∈ [0, 1];
(3) Whenever t1 ≤ t3 and t2 ≤ t4 for each t1, t2, t3, t4 ∈ [0, 1], it holds

that t1 ◦ t3 ≤ t2 ◦ t4.

Definition 2 ([7]). Let ▽ : [0, 1]2 → [0, 1] be a binary operation. We
say that ▽ is a triangular conorm (t–conorm) if it satisfies the following
conditions:

(1) ▽ is both associative and commutative;
(2) t▽ 0 = t for all t ∈ [0, 1];
(3) Whenever t1 ≤ t3 and t2 ≤ t4 for each t1, t2, t3, t4 ∈ [0, 1], it holds

that t1 ▽ t3 ≤ t2 ▽ t4.
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Remark 1. We utilize the concepts of the triangular norm, often referred to
as t–norm, and triangular conorm, commonly known as t–conorm, to define
and characterize fuzzy intersections and fuzzy unions.

Example 1 ([7]). According to the previous two definitions, the following
operators are basic examples of t–norm and t–conorms, respectively.

(1) a ◦ b = ab;
(2) a ◦ b = min{a, b};
(3) a▽ b = max{a, b};
(4) a▽ b = min{a+ b, 1}.

With the help of definition 1 and 2; Park [11] has recently introduced the
IFMS as follows.

Definition 3 ([11]). Let X be an arbitrary set, ◦ be a continuous t–norm,
▽ be a continuous t–conorm, and µ, ν be fuzzy sets on X2 × (0,∞). If µ
and ν satisfy the following conditions: for all x1, x2, x3 ∈ X and u, s > 0,

(1) µ(x1, x2, u) + ν(x1, x2, u) ≤ 1;
(2) µ(x1, x2, u) > 0;
(3) µ(x1, x2, u) = 1 ⇔ x1 = x2;
(4) µ(x1, x2, u) = µ(x2, x1, u);
(5) µ(x1, x3, u+ s) ≥ µ(x1, x2, u) ◦ µ(x2, x3, s);
(6) The function (µ)x1x2 : (0,∞) → (0, 1] is continuous;
(7) ν(x1, x2, u) > 0;
(8) ν(x1, x2, u) = 0 ⇔ x1 = x2;
(9) ν(x1, x2, u) = ν(x2, x1, u);

(10) ν(x1, x3, u+ s) ≤ ν(x1, x2, u)▽ ν(x2, x3, s);
(11) The function (ν)x1x2 : (0,∞) → (0, 1] is continuous;

then a 5-tuple (X, µ, ν, ◦,▽) is said to be an intuitionistic fuzzy metric space.

The functions µ(x1, x2, u) and ν(x1, x2, u) denote the degree of nearness
and the degree of non-nearness between x1 and x2 concerning u, respectively.

Example 2 ([11]). Let (X, d) be a metric space. Define a ◦ b = ab and
a▽ b = min{a+ b, 1}, for all a, b ∈ [0, 1], and let µ and ν be fuzzy sets on
X2 × (0,∞) defined as

µ(x1, x2, u) =
u

u+ d(x1, x2)
, ν(x1, x2, u) =

d(x1, x2)

u+ d(x1, x2)

for x1, x2 ∈ X and u > 0. Then (X, µ, ν, ◦,▽) is an IFMS.

Remark 2 ([4]). Let (X, µ, ν, ◦,▽) be an IFMS. Then, (X, µ, ◦) is a FMS.
Conversely, if (X, µ, ◦) is a FMS, then (X, µ, 1− µ, ◦,▽) is an IFMS, where
a▽ b = 1− [(1− a) ◦ (1− b)], for all a, b ∈ [0, 1].

Park [11] introduced a comprehensive definition of convergence of se-
quence in IFMSs as below.
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Definition 4 ([11]). Let (X, µ, ν, ◦,▽) be an IFMS. Then, a sequence (xn)
in X is said to be convergent to x0 ∈ X, if for all ε ∈ (0, 1) and u > 0, there
exists nε ∈ N such that n ≥ nε implies

µ(xn, x0, u) > 1− ε, ν(xn, x0, u) < ε

or equivalently

lim
n→∞

µ(xn, x0, u) = 1, lim
n→∞

ν(xn, x0, u) = 0

and is denoted by µ
ν − lim

n→∞
xn = x0 or xn

µ
ν−→ x0 as n → ∞.

Definition 5 ([11]). Let (X, µ, ν, ◦,▽) be an IFMS. Then, a sequence (xn)
is referred to as Cauchy sequence in X, if for all u > 0 and ε ∈ (0, 1), there
exists nε ∈ N such that n,N ≥ nε implies

µ(xn, xN , u) > 1− ε, ν(xn, xN , u) < ε

or equivalently

lim
n,N→∞

µ(xn, xN , u) = 1, lim
n,N→∞

ν(xn, xN , u) = 0.

Definition 6 ([4]). Let (X, µ, ν, ◦,▽) be an IFMS. Then, a sequence (xn)
is called statistically convergent to x0 ∈ X, if for all ε ∈ (0, 1) and u > 0,

δ({n ∈ N : µ(xn, x0, u) ≤ 1− ε or ν(xn, x0, u) ≥ ε}) = 0

or equivalently

lim
n→∞

|{n ∈ N : µ(xn, x0, u) ≤ 1− ε or ν(xn, x0, u) ≥ ε}|
n

= 0.

Example 3 ([4]). Let X = R, a ◦ b = ab, and a▽ b = min{a+ b, 1} for all
a, b ∈ [0, 1]. Define µ and ν by

µ(x1, x2, u) =
u

u+ |x1 − x2|
, ν(x1, x2, u) =

|x1 − x2|
u+ |x1 − x2|

for all x1, x2 ∈ X and u > 0. Then, (R, µ, ν, ◦,▽) is an IFMS. Now define a
sequence (xn) by

xn :=

{
1, ∀k ∈ N, n = k2;

0, ∃k ∈ N ∋ n ̸= k2.

Then, (xn) is statistically convergent to 0.

Definition 7 ([4]). Let (X, µ, ν, ◦,▽) be an IFMS. Then, a sequence (xn)
is called statistically Cauchy sequence, if for all ε ∈ (0, 1) and u > 0, there
exists N ∈ N such that

δ({n ∈ N : µ(xn, xN , u) ≤ 1− ε or ν(xn, xN , u) ≥ ε}) = 0.
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An interesting generalization of statistical convergence was introduced by
Kostryko et al. [18] with the help of an admissible ideal I of subsets of N,
the set of positive integers. Next, we recall the basic terminology used by
the authors to define this new type of convergence.

Definition 8 ([18]). Let X be a non-empty set. A family of subsets I ⊆
P (X) is referred to as an ideal in X, if

(1) ∅ ∈ I;
(2) T, S ∈ I ⇒ T ∪ S ∈ I;
(3) (T ∈ I ∧ S ⊆ T ) ⇒ S ∈ I.

Definition 9 ([18]). Let I be an ideal in X. Then, I is called non-trivial
ideal such that P (X) ̸= I and I ̸= ∅. Additionally, I is defined admissible
ideal, which is a non-trivial ideal I ⊆ P (X), if {{x} : x ∈ X} ⊆ I.

Example 4 ([18]). Let N =
∞⋃
k=1

Tk be a decomposition of N, assume that Tk

(k = 1, 2, . . . ) are infinite sets. Express by K the family of all A ⊆ N such
that A coincides only a finite number of Tk. Then, it is easy to see that K
is an admissible ideal in N.

Definition 10 ([18]). Let I ⊆ P (N) be an admissible ideal, (Pi) be a se-
quence of mutually disjoint sets of I, and (Ri) be a subset of N. Then, I
satisfies the condition (AP), if for all (Pi), there is a sequence (Ri) such
that for all i ∈ N, Pi∆Ri is finite and R =

⋃
i
Ri ∈ I. Here, ∆ denotes the

symmetric difference. It must be noted that Ri ∈ I.

Definition 11 ([18]). Let X be a non-empty set. A family of subsets ∅ ̸=
F ⊆ P (X) is referred to as a filter in X, if

(1) ∅ /∈ F ;
(2) T, S ∈ F ⇒ T ∩ S ∈ F ;
(3) (S ∈ F ∧ S ⊆ T ) ⇒ T ∈ F .

Remark 3 ([18]). The filter F (I) = {X \ S : S ∈ I} in X is called the
associated filter with ideal I.

Proposition 1 ([3]). Let I ⊆ P (N) be an admissible ideal with the condition
(AP), (Pi) be a countable collection of subsets of N, and (Pi) ∈ F (I). Then,
there exists a set P ⊂ N such that P ∈ F (I) and for all i, P \ Pi is finite.

Definition 12 ([18]). Let I be a non-trivial ideal in N. A sequence (xn) in
R is called ideal convergent (I–convergent) to x0 ∈ R, if for all ε > 0,

A(ε) = {n ∈ N : |xn − x0| ≥ ε} ∈ I

and is denoted by I − lim
n→∞

xn = x0 or xn
I−→ x0 as n → ∞.

Here, if I is an admissible ideal, then convergence in the ordinary sense
implies I–convergence.
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Definition 13 ([18]). Let I be a non-trivial ideal in N. A sequence (xn) is
referred to as I∗–convergent to x0 ∈ R, if there exists a set

H = {h1 < h2 < · · · < hk < · · · } ∈ F (I)

such that
lim

hk→∞
hk∈H

xhk
= x0.

Definition 14 ([3]). Let I be an admissible ideal in N. A sequence (xn)
is called an ideal Cauchy (I–Cauchy) sequence in R, if for all ε > 0, there
exists an N = N(ε) such that

A(ε) = {n ∈ N : |xn − xN | ≥ ε} ∈ I.

Definition 15 ([3]). Let I be an admissible ideal in N. A sequence (xn) is
referred to as an I∗–Cauchy sequence in R, if there exists a set

H = {h1 < h2 < · · · < hk < · · · } ∈ F (I)

such that
lim

hk,hp→∞
hk,hp∈H

|xhk
− xhp | = 0.

3. µ
νI–convergence and µ

νI–Cauchy sequences

This section defines the concepts of ideal convergence and ideal Cauchy
sequences in IFMSs. In addition, it provides some of basic properties.

Definition 16. Let I non-trivial ideal in N and (X, µ, ν, ◦,▽) be an IFMS.
Then, a sequence (xn) in X is said to be ideal convergent to x0 ∈ X, if for
all u > 0 and ε ∈ (0, 1),

A(u, ε) = {n ∈ N : µ(xn, x0, u) ≤ 1− ε, or ν(xn, x0, u) ≥ ε} ∈ I

and is denoted by µ
νI − lim

n→∞
xn = x0 or xn

µ
ν I−→ x0 as n → ∞. The number

x0 is called µ
νI-limit of the sequence (xn).

Example 5. If we take

I = If = {A ⊆ N : A is finite}

and
I = Iδ = {A ⊆ N : δ(A) = 0},

then µ
νI–convergence is the same as ordinary convergence and statistical

convergence in IFMS, respectively.

Remark 4. The ordinary convergence in IFMSs implies µ
νI–convergence, if

I is an admissible ideal.
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Proof. Let xn
µ
ν−→ x0 and I is an admissible ideal. In this case, for all u > 0

and ε ∈ (0, 1), there exists a positive integer n0 such that n ≥ n0 implies

µ(xn, x0, u) > 1− ε and ν(xn, x0, u) < ε,

K =
{
n ∈ N : µ(xn, x0, u) ≤ 1− ε or ν(xn, x0, u) ≥ ε

}
⊆ N \ {n0 + 1, n0 + 2, . . . }.

Since the set of K is finite and I is an admissible ideal, K ∈ I. Hence,
µ
νI − lim

n→∞
xn = x0. □

Next, we shall explore the compatibility of ideal convergence with various
convergence axioms. Presented below are the widely recognized axioms of
classical convergence:

I A constant sequence (x0, x0, . . . , x0, . . . ) converges to x0;
II The limit of a convergent sequence is unique;

III Every subsequence of the converged sequence is convergent and has
the same limit.

Theorem 1. Let (X, µ, ν, ◦,▽) be an IFMS and (xn) be a sequence in X.
(1) The µ

νI–convergence satisfies (I) and (II).
(2) Every subsequence of an µ

νI–convergent sequence is not µ
νI–convergent,

if I contains an infinite set.

Proof.
(1) It is obvious that µ

νI–convergence satisfies the proposition (I). We

prove that it satisfies (II) as well. Suppose that xn
µ
ν I−→ x0, xn

µ
ν I−→ x1,

and x0 ̸= x1. Choose u > 0 and ε = 1
n , (n = 2, 3, . . . ). Then, by

assumption and Remark 3 the sets

N \A = {n ∈ N : µ(xn, x1, u) > 1− ε, and ν(xn, x1, u) < ε} ∈ F (I),

N \B = {n ∈ N : µ(xn, x2, u) > 1− ε and ν(xn, x2, u) < ε} ∈ F (I).

But then the set (N\A)∩ (N\B) belongs to F (I), too. Hence, there
is an m ∈ N such that

µ(xm, x1, u) > 1− ε and ν(xm, x1, u) < ε,

µ(xm, x2, u) > 1− ε and ν(xm, x2, u) < ε.

From this µ(x1, x2, u) = 1 and ν(x1, x2, u) = 0 which is a contradic-
tion to x1 ̸= x2.

(2) Suppose that an infinite set A = {n1 < n2 < · · · < nk < · · · } ⊆ N
belongs to I. Put

B = N \A = {m1 < m2 < · · · < mk < · · · }.
The set B is infinite because in the opposite case N would belong to
I. Define the sequence (xn) as follows xnk

= x0, xmk
= x1, k ∈ N.
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Obviously µ
νI − lim

n→∞
xn = x0. In addition, the sequence (xmk

) of

(xn) is constant and thus µ
νI − lim

mk→∞
xmk

= x1 (see proposition (I)).

Hence, µ
νI–convergence does not satisfy the proposition (III). □

Definition 17. Let I be an admissible ideal in N and (X, µ, ν, ◦,▽) be an
IFMS. Then, a sequence (xn) in X is said to be µ

νI–Cauchy sequence, if for
all u > 0 and ε ∈ (0, 1), there exists an integer N ∈ N such that

A(u, ε) = {n ∈ N : µ(xn, xN , u) ≤ 1− ε or ν(xn, xN , u) ≥ ε} ∈ I.

Theorem 2. Let I be an admissible ideal in N, (X, µ, ν, ◦,▽) be an IFMS
and (xn) is a sequence in X. If the sequence (xn) is a µ

νI–convergent sequence
in X, then it is µ

νI–Cauchy sequence in X.

Proof. Let xn
µ
ν I−→ x0. Then, for all u > 0 and ε ∈ (0, 1), we have

A(u, ε) = {n ∈ N : µ(xn, x0, u) ≤ 1− ε or ν(xn, x0, u) ≥ ε} ∈ I.

Because of the definition of an admissible ideal, there exists an N /∈ A(u, ε).
Assume that

B = {n ∈ N : µ(xn, xN , u) ≤ 1− ε or ν(xn, xN , u) ≥ ε}.
Consider the following inequalities

µ(xn, xN , u) ≥ µ
(
xn, x0,

u

2

)
◦ µ

(
xN , x0,

u

2

)
,

ν(xn, xN , u) ≤ ν
(
xn, x0,

u

2

)
▽ ν

(
xN , x0,

u

2

)
.

Let n ∈ B. Then, µ(xn, xN , u) ≤ 1− ε or ν(xn, xN , u) ≥ ε.
If µ(xn, xN , u) ≤ 1− ε, then

(1− ε) ◦ (1− ε) ≥ µ
(
xn, x0,

u

2

)
◦ µ

(
xN , x0,

u

2

)
.

Moreover, we have µ(xN , x0, u) > 1 − ε because N /∈ A(u, ε). Hence,
µ(xn, x0, u) ≤ 1 − ε, then n ∈ A(u, ε). In this case, B ⊆ A(u, ε) ∈ I
for all u > 0 and ε ∈ (0, 1). Similarly, we observe that if ν(xn, xN , u) ≥ ε,
then B ⊆ A(u, ε) ∈ I for all u > 0 and ε ∈ (0, 1). Consequently, (xn) is an
µ
νI–Cauchy sequence in X. □

4. µ
νI∗–convergence and µ

νI∗–Cauchy sequences

Varol [4] proved that a sequence (xn) in an IFMSs (X, µ, ν, ◦,▽) is statis-
tically convergent to x0 ∈ X if and only if there exists an increasing index
sequence K = {k1 < k2 < · · · } of natural numbers such that δ(K) = 1 and

µ
ν − lim

kn→∞
kn∈K

xkn = x0.

We use this result to introduce the concept of I∗–convergence in an IFMS
as follows.
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Definition 18. Let (X, µ, ν, ◦,▽) be an IFMS. Then, a sequence (xn) in X
is said to be I∗–convergent to x0 ∈ X, if there exists a subset H = {h1 <
h2 < · · · } ∈ F (I) such that

(1) µ
ν− lim

hk→∞
hk∈H

xhk
= x0.

The element x0 is called the I∗–limit of the sequence (xn) and we write
µ
νI∗ − lim

n→∞
xn = x0.

Theorem 3. Let (X, µ, ν, ◦,▽) be an IFMS and (xn) be a sequence in X. If

xn
µ
ν I

∗
−−→ x0, then xn

µ
ν I−→ x0.

Proof. By hypothesis, there is a set K ∈ I such that (1) holds, where

H = N \K = {h1 < h2 < · · · < hk < · · · }.
Let u > 0 and ε ∈ (0, 1). By (1), there is a k0 ∈ N, such that µ(xn, x0, u) >

1− ε and ν(xn, x0, u) < ε for n > k0. Put

A(u, ε) = {n ∈ N : µ(xn, x0, u) ≤ 1− ε or ν(xn, x0, u) ≥ ε}.
Then,

A(u, ε) ⊆ K ∪ {h1, h2, . . . , hk0}.
Since I is an admissible ideal and K ∈ I,

K ∪ {h1, h2, . . . , hk0} ∈ I

and therefore A(u, ε) ∈ I. □

The following Example 6 states that the converse of Theorem 3 does not
always hold.

Example 6. Assume that (R, |.|) denotes the space of real numbers with
the usual metric, and let a ◦ b = ab, a▽ b = min{a+ b, 1} for all a, b ∈ [0, 1].
Define µ and ν by

µ(x1, x2, u) =
u

u+ |x1 − x2|
and ν(x1, x2, u) =

|x1 − x2|
u+ |x1 − x2|

for all x1, x2 ∈ R and u > 0. Put I = K (see Example 4). Suppose that x0
is accumulation point of R. Hence, there exists a sequence (xn) in R such
that µ

ν − lim
n→∞

xn = x0. Define

yn :=

{
xj , if n ∈ Tj , j = 1, 2, . . . ;

0, otherwise.

We choose u > 0 and m ∈ N such that 1
m < ε for ε ∈ (0, 1). Therefore,

A(u, ε) ⊆
{
n ∈ N : µ(yn, x0, u) ≤ 1− 1

m

}
⊆

m⋃
s=1

Ts,
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where A(u, ε) = {n ∈ N : µ(yn, x0, u) ≤ 1 − ε}. Hence, according to the
notion of ideal A(u, ε) ∈ I and so µ

νI − lim
n→∞

yn = x0. Now, assume that
µ
νI∗− lim

n→∞
yn = x0. Then, there exists a set H = {mk : t > k,mk < mt} ∈ I

such that
µ
ν − lim

mk→∞
mk∈H

yn = x0.

From the notion of ideal, there exists a s ∈ N such that

H ⊆ T1 ∪ T2 ∪ · · · ∪ Ts.

But by notation used in proof of Theorem 3 and Ts+1 ⊆ N \ H, we have
ymk

= 0 for infinitely many of mk’s. Consequently, µ
ν lim
mk→∞

ymk
= x0 can

not be true.

Theorem 4. Let (X, µ, ν, ◦,▽) be an IFMS, I be an admissible ideal in N,
(xn) be a sequence in X, and x0 ∈ X.

(1) If I has the condition (AP), then µ
νI − lim

n→∞
xn = x0 implies

µ
νI∗ − lim

n→∞
xn = x0.

(2) If X has at least one accumulation point and µ
νI − lim

n→∞
xn = x0

implies µ
νI∗ − lim

n→∞
xn = x0, then I has the property (AP).

Proof.

(1) Let xn
µ
ν I−→ x0 and I satisfies the condition (AP). Then, for all u > 0

and ε ∈ (0, 1) the set

A(u, ε) = {n : µ(xn, x0, u) ≤ 1− ε or ν(xn, x0, u) ≥ ε} ∈ I.

Consequently, each of the following sets Pk ∈ I (k = 1, 2, . . . )

P1 =

{
n ∈ N : µ(xn, x0, u) ≤

1

2
or ν(xn, x0, u) ≥

1

2

}
Pk =

{
n ∈ N :

k − 1

k
< µ(xn, x0, u) ≤

k

k + 1
or

1

k + 1
≤ ν(xn, x0, u) <

1

k

}
for k ≥ 2. Obviously Pi ∩ Pj = ∅ for i ̸= j. Since I satisfies (AP),
there exist sets Rj ⊆ N such that Pj∆Rj is a finite set (j = 1, 2, . . . )

and R =
∞⋃
j=1

Rj ∈ I.

It suffices to prove that

(2) µ
ν − lim

n→∞
n∈H

xn = x0,

where H = N \R.
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Let λ ∈ (0, 1) and u > 0. Choose a m ∈ N such that 1
m < λ.

Then,

{n ∈ N : µ(xn, x0, u) ≤ 1− λ or ν(xn, x0, u) ≥ λ} ⊆
m+1⋃
j=1

Pj .

The set on right-hand side belongs to I by the additivity of I. Since
Pj∆Rj is finite (j = 1, 2, . . . ), there is an nε ∈ N such that

m+1⋃
j=1

Rj ∩ (nε,∞) =
m+1⋃
j=1

Pj ∩ (nε,∞).

If we now n /∈ R, n > nε, then n /∈
m+1⋃
j=1

Rj and thus n /∈
m+1⋃
j=1

Pj .

But then

n ∈ {n ∈ N : µ(xn, x0, u) > 1− λ and ν(xn, x0, u) < λ} .

Hence, (2) holds.
(2) Suppose x0 ∈ X is an accumulation point of X. Then, there exists

a sequence (yn) of distinct elements of X such that yn ̸= x0 for any
n, and µ

ν − lim
n→∞

yn = x0. Let {P1, P2, . . . } be a disjoint family of
nonempty sets in I. Define a sequence (xk) in the following way:
xk = yn if k ∈ Pj and xk = x0 if k /∈ Pj , for all j. Let η ∈ (0, 1) and
u > 0. Choose n ∈ N such that 1

n < η. Then,

(3) A(u, η) ⊆
n+1⋃
j=1

Pj

where A(u, η) = {k ∈ N : µ(xk, x0, u) ≤ 1− η or ν(xk, x0, u) ≥ η}.
Hence, A(u, η) ∈ I and µ

νI − lim
k→∞

xk = x0. By virtue of our as-

sumption, we have µ
νI∗ − lim

k→∞
xk = x0. Therefore, there exists a set

R ∈ I such that H = N \R ∈ F (I) and

(4) µ
ν− lim

kn→∞
kn∈H

xkn = x0

Put Rj = Pj ∩R for j ∈ N. Then, Rj ∈ I for all j ∈ N. Moreover,
∞⋃
j=1

Rj = R ∩
∞⋃
j=1

Pj ⊂ R

and thus
∞⋃
j=1

Rj ∈ I. Since (4), for all η ∈ (0, 1) and u > 0,

B = {kn ∈ N : µ(xkn , x0, u) ≤ 1− η or ν(xkn , x0, u) ≥ η} ⊂ H



124 Ideal convergence and ideal Cauchy sequences in IFMSs

and B is finite. Since (3), H ∩ Pj is finite. In addition,

Pj∆Rj = Pj \Rj = Pj \R = Pj ∩H

and Pj∆Rj is finite. This proves that ideal I has the property (AP).
□

Theorem 5. Let I be an admissible ideal in N and X be an IFMS. If X
has no accumulation point, then µ

νI–convergence and µ
νI∗–convergence are

the same.

Proof. Let x0 ∈ X and xn
µ
ν I−→ x0. Thanks to Theorem 3, it suffices to prove

that xn
µ
ν I

∗
−−→ x0 as n → ∞. Since X has no accumulation points, there exists

u > 0 and ε ∈ (0, 1) such that

B(x0, ε, u) = {x ∈ X : µ(xn, x0, u) > 1− ε and ν(xn, x0, u) < ε} = {x0}

From the assumption {n ∈ N : µ(xn, x0, u) ≤ 1− ε or ν(xn, x0, u) ≥ ε} ∈ I.
Hence,

{n ∈ N : µ(xn, x0, u) > 1− ε and ν(xn, x0, u) < ε} =

{n ∈ N : xn = x0} ∈ F (I)

and obviously xn
µ
ν I

∗
−−→ x0. □

Definition 19. Let I be an admissible ideal in N and (X, µ, ν, ◦,▽) be an
IFMS. Then, a sequence (xn) is referred to as µ

νI∗–Cauchy sequence in X, if
there exists a set

H = {h1 < h2 < · · · < hk < · · · } ∈ F (I)

such that

(5) lim
hk,hp→∞
hk,hp∈H

µ(xhk
, xhp , u) = 1 and lim

hk,hp→∞
hk,hp∈H

ν(xhk
, xhp , u) = 0.

Theorem 6. If a sequence (xn) is an µ
νI∗–Cauchy sequence, then it is µ

νI–
Cauchy, for all I is an admissible ideal in N.

Proof. Suppose that (xn) be an µ
νI∗–Cauchy sequence. In that case, there

exists a set

H = N \K = {h1 < h2 < · · · < hk < · · · } ∈ F (I)

such that µ(xhk
, xhp , u) > 1−ε and ν(xhk

, xhp , u) < ε, for all u > 0, ε ∈ (0, 1)
and hk, hp > k0. We choose N = hk0+1. Then, for all u > 0 and ε ∈ (0, 1),

µ(xhk
, xN , u) > 1− ε and ν(xhk

, xN , u) < ε, hk > k0.

Hence, K ∈ I and

(6) A(u, ε) ⊂ K ∪ {h1 < h2 < · · · < hk0},
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where A(u, ε) = {hk : µ(xhk
, xN , u) ≤ 1 − ε or ν(xhk

, xN , u) ≥ ε}. From
here

K ∪ {h1 < h2 < · · · < hk0} ∈ I.

Consequently, the sequence (xn) is an µ
νI–Cauchy sequence. □

Theorem 7. Let I be an admissible ideal in N and (X, µ, ν, ◦,▽) be an
IFMS. µ

νI–Cauchy sequence in X implies that µ
νI∗–Cauchy sequence in X if

and only if the I ideal has the condition (AP).

Proof. Suppose that a sequence (xn) be an µ
νI–Cauchy sequence in X and

the I ideal has the condition (AP). Then, there exists an N(ε) such that for
all u > 0 and ε ∈ (0, 1)

{n ∈ N : µ(xn, xN , u) ≤ 1− ε or ν(xn, xN , u) ≥ ε} ∈ I.

We choose

Si =

{
n ∈ N : µ(xn, xmi , u) >

i− 1

i
and ν(xn, xmi , u) <

1

i

}
,

for i = 1, 2, . . . , where mi = N(1i ). Si ∈ F (I) is obvious for i = 1, 2, . . . .
Since I has the condition (AP), then by Proposition 1 there exists a set
S ∈ F (I), and S \ Si is finite for all i. We prove that

lim
n,m→∞
n,m∈S

µ(xn, xm, u) = 1 and lim
n,m→∞
n,m∈S

ν(xn, xm, u) = 0.

Assume that ε ∈ (0, 1), u > 0 and k ∈ N such that k > 1
ε . If n,m ∈ S,

then S \ Sk is a finite set. Hence, there exists j = j(k) such that m ∈ Sk

and n ∈ Sk for all m,n > j(k). Thus,

µ(xn, xmk
, u) >

k − 1

k
and µ(xm, xmk

, u) >
k − 1

k
,

ν(xn, xmk
, u) <

1

k
and ν(xn, xmk

, u) <
1

k
,

for all n,m > j(k). In that case,

µ(xn, xm, u) ≥ µ
(
xn, xmk

,
u

2

)
◦ µ

(
xm, xmk

,
u

2

)
> (1− ε) ◦ (1− ε) = δ(ε),

ν(xn, xm, u) ≤ ν
(
xn, xmk

,
u

2

)
▽ ν

(
xm, xmk

,
u

2

)
< ε▽ ε = δ(ε)

for m,n > j(k). Consequently, the proof is complete. □

Theorem 8. Let I be an admissible ideal in N and (X, µ, ν, ◦,▽) be an
IFMS. If a sequence in X is an µ

νI∗–convergent sequence, then it is an µ
νI∗–

Cauchy sequence.
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Proof. Let xn
µ
ν I

∗
−−→ x0. Then, we have

H = {h1 < h2 < · · · < hk < · · · } ∈ F (I)

such that
µ
ν − lim

hk→∞
hk∈H

xhk
= x0.

Consider the following inequalities

µ(xhk
, xhp , u) ≥ µ

(
xhk

, x0,
u

2

)
◦ µ

(
xhp , x0,

u

2

)
> (1− ε) ◦ (1− ε) = δ(ε),

ν(xhk
, xhp , u) ≤ ν

(
xhk

, x0,
u

2

)
▽ ν

(
xhp , x0,

u

2

)
< ε▽ ε = δ(ε),

we observe that

lim
hk,hp→∞
hk,hp∈H

µ(xhk
, xhp , u) = 1 and lim

hk,hp→∞
hk,hp∈H

ν(xhk
, xhp , u) = 0.

Consequently, the sequence (xn) is an µ
νI∗–Cauchy sequence. □

5. µ
νI–limit points and µ

νI–cluster points

This section defines the notions of µ
νI–limit points and µ

νI–cluster points in
IFMS. Moreover, it analyses the connection between these concepts. Finally,
it studies that set of µ

νI–cluster points is closed.

Definition 20. Let I be a non-trivial ideal in N, (X, µ, ν, ◦,▽) be an IFMS,
and x = (xn) be a sequence in X. Then, an element x0 ∈ X is referred to
as an µ

νI–limit point of x, if there is a set H = {h1 < h2 < · · · } /∈ I and
µ
ν − lim

hk→∞
hk∈H

xhk
= x0.

Definition 21. Let I be a non-trivial ideal in N, (X, µ, ν, ◦,▽) be an IFMS,
and x = (xn) be a sequence in X. Then, an element x0 ∈ X is called an
µ
νI–cluster point of x, if for all u > 0 and ε ∈ (0, 1)

{n ∈ N : µ(xn, x0, u) > 1− ε and ν(xn, x0, u) < ε} /∈ I.

The set of all µ
νI–limit points and µ

νI–cluster points of a sequence x are
denoted by µ

νI(Λx) and µ
νI(Γx), respectively.

Proposition 2. Let I be an admissible ideal in N, (X, µ, ν, ◦,▽) be an IFMS,
and x = (xn) be a sequence in X. Then, µ

νI(Λx) ⊂ µ
νI(Γx).

Proof. Let x0 ∈ µ
νI(Λx), then there exists a set H = {h1 < h2 < · · · } /∈ I

such that

(7) µ
ν− lim

hk→∞
hk∈H

xhk
= x0.



Aykut Or, Gökay Karabacak 127

Take u > 0 and ε ∈ (0, 1). According to (7), there exists k0 ∈ N such that
for k > k0, µ(xhk

, x0, u) > 1− ε and ν(xhk
, x0, u) < ε. Hence,

H\{h1, h2, . . . , hk0} ⊂ {n ∈ N : µ(xn, x0, u) > 1−ε and ν(xn, x0, u) < ε}
and thus {n ∈ N : µ(xn, x0, u) > 1 − ε and ν(xn, x0, u) < ε} /∈ I which
means that x0 ∈ µ

νI(Γx). □

Theorem 9. Let (X, µ, ν, ◦,▽) be an IFMS and x = (xn) be a sequence in
X. Then, the set µ

νI(Γx) is closed in X, if I is an admissible ideal in N.

Proof. Let y ∈ µ
νI(Γx) and u > 0, ε ∈ (0, 1). Then, x0 ∈ B(y, ε, u)∩ µ

νI(Γx).
Suppose that δ ∈ (0, 1) and u > 0 such that

B(x0, δ, u) ⊂ B(y, ε, u).

Hence, T ⊂ K, where

T = {n ∈ N : µ(x0, xn, u) > 1− δ, ν(x0, xn, u) < δ},
K = {n ∈ N : µ(y, xn, u) > 1− ε, ν(y, xn, u) < ε}.

Consequently,

{n ∈ N : µ(y, xn, u) > 1− ε, ν(y, xn, u) < ε} /∈ I, y ∈µ
ν I(Γx). □

6. Conclusion

This paper studies the concept of ideal convergence, which is a general-
ization of ordinary convergence and statistical convergence in intuitionistic
fuzzy metric spaces. In addition, it studies the concepts of µ

νI∗–convergent,
µ
νI–Cauchy sequences, and µ

νI∗–Cauchy sequences and analyses the basic
properties of these concepts. Finally, it defines the concepts of µ

νI–limit
points and µ

νI–cluster points in intuitionistic fuzzy metric spaces and exam-
ines the connection between them.

In further research, it would be interesting to investigate similar results
for double sequences.
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